Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9482, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664516

RESUMO

This research proposes a framework for categorizing the radial tire mode shapes using machine learning (ML) based classification and feature recognition algorithms, advancing the development of a digital twin for tire performance analysis. Tire mode shape categorization is required to identify modal features in a specific frequency range to maximize driving performance and secure safety. However, the mode categorization work requires a lot of manual effort to interpret modes. Therefore, this study suggests an ML-based classification tool to replace the conventional categorization process with two primary objectives: (1) create a database by categorizing the tire mode shapes based on the identified features and (2) develop an ML-based surrogate model to classify the tire mode shapes without manual effort. The feature map of the tire mode shape is built with the Zernike annular moment descriptor (ZAMD). The mode shapes are categorized using the correlation value derived by the modal assurance criteria (MAC) with all ZAMD values for each tire mode shape and subsequently creating the appropriate labels. The decision tree, random forests, and XGBoost, the representative supervised-learning algorithms for classification, are implemented for surrogate model development. The best-performed classifier can categorize the mode shapes without any manual effort with a high accuracy of 99.5%.

2.
Adv Sci (Weinh) ; 9(25): e2203011, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35863910

RESUMO

Cytoskeleton-mediated force transmission regulates nucleus morphology. How nuclei shaping occurs in fibrous in vivo environments remains poorly understood. Here suspended nanofiber networks of precisely tunable (nm-µm) diameters are used to quantify nucleus plasticity in fibrous environments mimicking the natural extracellular matrix. Contrary to the apical cap over the nucleus in cells on 2-dimensional surfaces, the cytoskeleton of cells on fibers displays a uniform actin network caging the nucleus. The role of contractility-driven caging in sculpting nuclear shapes is investigated as cells spread on aligned single fibers, doublets, and multiple fibers of varying diameters. Cell contractility increases with fiber diameter due to increased focal adhesion clustering and density of actin stress fibers, which correlates with increased mechanosensitive transcription factor Yes-associated protein (YAP) translocation to the nucleus. Unexpectedly, large- and small-diameter fiber combinations lead to teardrop-shaped nuclei due to stress fiber anisotropy across the cell. As cells spread on fibers, diameter-dependent nuclear envelope invaginations that run the nucleus's length are formed at fiber contact sites. The sharpest invaginations enriched with heterochromatin clustering and sites of DNA repair are insufficient to trigger nucleus rupture. Overall, the authors quantitate the previously unknown sculpting and adaptability of nuclei to fibrous environments with pathophysiological implications.


Assuntos
Actinas , Adesões Focais , Actinas/metabolismo , Núcleo Celular/fisiologia , Citoesqueleto/metabolismo , Adesões Focais/fisiologia , Fibras de Estresse/fisiologia
3.
Mol Biol Cell ; 33(6): ar55, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34985924

RESUMO

Ovarian cancer is routinely diagnosed long after the disease has metastasized through the fibrous submesothelium. Despite extensive research in the field linking ovarian cancer progression to increasingly poor prognosis, there are currently no validated cellular markers or hallmarks of ovarian cancer that can predict metastatic potential. To discern disease progression across a syngeneic mouse ovarian cancer progression model, here we fabricated extracellular matrix mimicking suspended fiber networks: cross-hatches of mismatch diameters for studying protrusion dynamics, aligned same diameter networks of varying interfiber spacing for studying migration, and aligned nanonets for measuring cell forces. We found that migration correlated with disease while a force-disease biphasic relationship exhibited F-actin stress fiber network dependence. However, unique to suspended fibers, coiling occurring at the tips of protrusions and not the length or breadth of protrusions displayed the strongest correlation with metastatic potential. To confirm that our findings were more broadly applicable beyond the mouse model, we repeated our studies in human ovarian cancer cell lines and found that the biophysical trends were consistent with our mouse model results. Altogether, we report complementary high throughput and high content biophysical metrics capable of identifying ovarian cancer metastatic potential on a timescale of hours.


Assuntos
Benchmarking , Neoplasias Ovarianas , Actinas/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Matriz Extracelular/metabolismo , Feminino , Humanos , Camundongos
4.
Adv Biol (Weinh) ; 5(6): e2000592, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33759402

RESUMO

Cell fragments devoid of the nucleus play an essential role in intercellular communication. Mostly studied on flat 2D substrates, their origins and behavior in native fibrous environments remain unknown. Here, cytoplasmic fragments' spontaneous formation and behavior in suspended extracellular matrices mimicking fiber architectures (parallel, crosshatch, and hexagonal) are described. After cleaving from the parent cell body, the fragments of diverse shapes on fibers migrate faster compared to 2D. Furthermore, while fragments in 2D are mostly circular, a higher number of rectangular and blob-like shapes are formed on fibers, and, interestingly, each shape is capable of forming protrusive structures. Absent in 2D, fibers' fragments display oscillatory migratory behavior with dramatic shape changes, sometimes remarkably sustained over long durations (>20 h). Immunostaining reveals paxillin distribution along fragment body-fiber length, while Forster Resonance Energy Transfer imaging of vinculin reveals mechanical loading of fragment adhesions comparable to whole cell adhesions. Using nanonet force microscopy, the forces exerted by fragments are estimated, and peculiarly small area fragments can exert forces similar to larger fragments in a Rho-associated kinase dependent manner. Overall, fragment dynamics on 2D substrates are insufficient to describe the mechanosensitivity of fragments to fibers, and the architecture of fiber networks can generate entirely new behaviors.


Assuntos
Matriz Extracelular , Esforço Físico , Adesão Celular , Movimento Celular , Fenômenos Mecânicos
5.
ACS Nano ; 15(2): 2554-2568, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33236888

RESUMO

Exogenous high-voltage pulses increase cell membrane permeability through a phenomenon known as electroporation. This process may also disrupt the cell cytoskeleton causing changes in cell contractility; however, the contractile signature of cell force after electroporation remains unknown. Here, single-cell forces post-electroporation are measured using suspended extracellular matrix-mimicking nanofibers that act as force sensors. Ten, 100 µs pulses are delivered at three voltage magnitudes (500, 1000, and 1500 V) and two directions (parallel and perpendicular to cell orientation), exposing glioblastoma cells to electric fields between 441 V cm-1 and 1366 V cm-1. Cytoskeletal-driven force loss and recovery post-electroporation involves three distinct stages. Low electric field magnitudes do not cause disruption, but higher fields nearly eliminate contractility 2-10 min post-electroporation as cells round following calcium-mediated retraction (stage 1). Following rounding, a majority of analyzed cells enter an unusual and unexpected biphasic stage (stage 2) characterized by increased contractility tens of minutes post-electroporation, followed by force relaxation. The biphasic stage is concurrent with actin disruption-driven blebbing. Finally, cells elongate and regain their pre-electroporation morphology and contractility in 1-3 h (stage 3). With increasing voltages applied perpendicular to cell orientation, we observe a significant drop in cell viability. Experiments with multiple healthy and cancerous cell lines demonstrate that contractile force is a more dynamic and sensitive metric than cell shape to electroporation. A mechanobiological understanding of cell contractility post-electroporation will deepen our understanding of the mechanisms that drive recovery and may have implications for molecular medicine, genetic engineering, and cellular biophysics.


Assuntos
Actinas , Eletroporação , Actinas/metabolismo , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Sobrevivência Celular , Citoesqueleto/metabolismo
6.
Commun Biol ; 3(1): 470, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32843667

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Commun Biol ; 3(1): 390, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694539

RESUMO

Aligned extracellular matrix fibers enable fibroblasts to undergo myofibroblastic activation and achieve elongated shapes. Activated fibroblasts are able to contract, perpetuating the alignment of these fibers. This poorly understood feedback process is critical in chronic fibrosis conditions, including cancer. Here, using fiber networks that serve as force sensors, we identify "3D perpendicular lateral protrusions" (3D-PLPs) that evolve from lateral cell extensions named twines. Twines originate from stratification of cyclic-actin waves traversing the cell and swing freely in 3D to engage neighboring fibers. Once engaged, a lamellum forms and extends multiple secondary twines, which fill in to form a sheet-like PLP, in a force-entailing process that transitions focal adhesions to activated (i.e., pathological) 3D-adhesions. The specific morphology of PLPs enables cells to increase contractility and force on parallel fibers. Controlling geometry of extracellular networks confirms that anisotropic fibrous environments support 3D-PLP formation and function, suggesting an explanation for cancer-associated desmoplastic expansion.


Assuntos
Citoesqueleto/genética , Matriz Extracelular/genética , Adesões Focais/genética , Neoplasias/genética , Actinas/genética , Adesão Celular/genética , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Miofibroblastos/metabolismo , Neoplasias/patologia , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...